1. Exercises from Sections 2.2-2.3

PROBLEM 1. (Folland 2.1.8) Suppose f : S — R, S C R™. If all partial derivatives 0;f exist and

are bounded on S, then f is continuous on S.

Remark: Notice the converse is not true - i.e. f(z,y) = 22 + y? on R? has unbounded partials

PROOF. e Fix € > 0, pick any = € S, and consider |f(x; + h;) — f(z)| for a vector h.

e We proceed by adding zero in a clever way and using the triangle inequality:
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e For each j, fix all the coordinates where k # j, then by the mean value theorem for 1 variable
functions there exists ¢; € (x;,x; + h;) such that %(cj) = (f(z; + hj) — f(x;))/h;
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o Applying boundedness of the partial derivatives, for each j there exists M; such that [, f(c;)| <
M;, then
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e > hj = 0as h— 0, therefore just pick i small enough that 3 h; < e/nmax(N;).

PROBLEM 2. Let f(x,y) = edo—y’, Compute Vf and find the directional derivative of f in the

direction u = (2,2) at the point (1,-2)

Remember that:
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vf_(@x’ay)_<4e , —2ye )

and is interpreted as the direction in which f is most rapidly increasing. We can find the rate of change

in a particular direction by taking the inner product of V f at the point (1, —2) with the direction u:
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PROBLEM 3. (Practice with the chain rule) Suppose that w = f(z,y,t), = g(y,t), y = h(t). Find
dw/dt.
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The easiest way to keep your book-keeping straight is to draw the “derivative tree” and just follow
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the branches.

Now we multiply along each “branch” and add the separate branches:
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PROBLEM 4. Find the tangent plane to the surface S in R? described by the following equations at
the given point in a € R3.
(1) z=2%—y%a=(2,-1,5)
(2) 2% +2y* +322 =6,a = (1,1,-1)
(3) wyz? —log(z — 1) =8,a=(-2,-1,2)

Note for Peter: Try and draw an embedded surface in R? to give students a “feel” for what tangent
spaces really are, then carry out the calculations. Make a joke about how calculus and linear algebra
are about to make babies.

The strategy for all of these problems is the same. Theorem 2.37 tells us that if ' : R3 — R
is differentiable and we define an embedded surface in R? by the level set F(z,y,z) = ¢, then VF is
perpendicular to S at each point in S. We use this fact to define what the normal vectors of the tangent

planes are.

Part 1: We can rearrange to get g1 (x,y, 2) = 2 —y> — 2, which is clearly a differentiable function of
z,y,z. Now Vg1 = 220, —3y*8, — 0., so at the point (2, —1,5) we have that (Vg1 )2, _15 = (4,-3,—1).
The tangent plane T(5 _; 551 is defined by the equation 4z — 3y — 2 = d, and we can solve for d since we
know a point on the plane. Plugging in (2, —1,5) gives d = 4(2) — 3(—1) — 5 = 6, so the tangent plane
isdx — 3y — 2z =6.

Part 2: We do exactly the same thing. Set go(z,y, z) = 2% + 2y? + 322 — 6, then:
Vg = 220, + 4y0, + 620,

At the point (1,1, —1), we have Vgo = (2,4, —6), therefore the tangent plane is given by 2z +4y—6z = d.
We solve for d by plugging in the point on the plane: d = 2(1) 4+ 4(1) — 6(—1) = 12.

Part 3: We are experts at this by now. Set g3(z,y,2) = xy2z? —log(z — 1) — 6, then
Vs = yz20, + x228y - L62
z—1
The normal to the tangent plane at the point (—2,—1,2) is given by n = ((—=1)(4),(-2)(1),-1) =
(—=4,-2,—1). The equation of the tangent plane is given by: —4(—2) — 2(—-1) — (2) = 8 = d so
4o + 2y + z = 8.



