1. Exercises from Sections 2.2-2.3

Problem 1. (Folland 2.1.8) Suppose $f: S \rightarrow \mathbb{R}, S \subseteq \mathbb{R}^{n}$. If all partial derivatives $\partial_{j} f$ exist and are bounded on S, then f is continuous on S.

Remark: Notice the converse is not true - i.e. $f(x, y)=x^{2}+y^{2}$ on \mathbb{R}^{2} has unbounded partials

Proof. - Fix $\epsilon>0$, pick any $x \in S$, and consider $\left|f\left(x_{i}+h_{i}\right)-f(x)\right|$ for a vector h.

- We proceed by adding zero in a clever way and using the triangle inequality:

$$
\begin{aligned}
\left|f\left(x_{1}+h_{1}, \ldots, x_{n}-h_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)\right|= & \mid f\left(x_{1}+h_{1}, \ldots, x_{n}+h_{n}\right)-f\left(x_{1}+h_{1}, \ldots, x_{n-1}+h_{n-1}, x_{n}\right) \\
& +f\left(x_{1}+h_{1}, \ldots, x_{n-1}+h_{n-1}, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) \mid \\
= & \mid \sum_{j=1}^{n} f\left(x_{1}+h_{1}, \ldots, x_{j}+h_{j}, x_{j+1}, \ldots, x_{n}\right)-f\left(x_{1}+h_{1}, \ldots, x_{j}, x_{j+1}, \ldots, x\right. \\
\leq & \sum_{j=1}^{n} \mid f\left(x_{1}+h_{1}, \ldots, x_{j}+h_{j}, x_{j+1}, \ldots, x_{n}\right)-f\left(x_{1}+h_{1}, \ldots, x_{j}, x_{j+1}, \ldots, x_{1}\right.
\end{aligned}
$$

- For each j, fix all the coordinates where $k \neq j$, then by the mean value theorem for 1 variable functions there exists $c_{j} \in\left(x_{j}, x_{j}+h_{j}\right)$ such that $\frac{\partial f}{\partial x_{j}}\left(c_{j}\right)=\left(f\left(x_{j}+h_{j}\right)-f\left(x_{j}\right)\right) / h_{j}$

$$
\sum_{j=1}^{n}\left|f\left(x_{1}+h_{1}, \ldots, x_{j}+h_{j}, x_{j+1}, \ldots, x_{n}\right)-f\left(x_{1}+h_{1}, \ldots, x_{j}, x_{j+1}, \ldots, x_{n}\right)\right|=\sum_{j=1}^{n}\left|\frac{\partial f}{\partial x_{j}}\left(c_{j}\right) h_{j}\right|
$$

- Applying boundedness of the partial derivatives, for each j there exists M_{j} such that $\left|\partial_{x_{j}} f\left(c_{j}\right)\right|<$ M_{j}, then

$$
\sum_{j=1}^{n}\left|\frac{\partial f}{\partial x_{j}}\left(c_{j}\right) h_{j}\right| \leq \sum_{j=1}^{n} M_{j} h_{j} \leq n \max \left\{M_{j}\right\} \sum_{j} h_{j}
$$

- $\sum_{j} h_{j} \rightarrow 0$ as $h \rightarrow 0$, therefore just pick h small enough that $\sum_{j} h_{j}<\epsilon / n \max \left(N_{j}\right)$.

Problem 2. Let $f(x, y)=e^{4 x-y^{2}}$. Compute ∇f and find the directional derivative of f in the direction $u=\left(\frac{3}{5}, \frac{4}{5}\right)$ at the point $(1,-2)$

Remember that:

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\left(4 e^{4 x-y^{2}},-2 y e^{4 x-y^{2}}\right)
$$

and is interpreted as the direction in which f is most rapidly increasing. We can find the rate of change in a particular direction by taking the inner product of ∇f at the point $(1,-2)$ with the direction u :

$$
\partial_{u} f=\nabla f \cdot u=\left(4 e^{0},-2(-2) e^{0}\right) \cdot\left(\frac{3}{5}, \frac{4}{5}\right)=\frac{12}{5}+\frac{16}{5}=\frac{28}{5}
$$

Problem 3. (Practice with the chain rule) Suppose that $w=f(x, y, t), x=g(y, t), y=h(t)$. Find $d w / d t$.

The easiest way to keep your book-keeping straight is to draw the "derivative tree" and just follow the branches.

Now we multiply along each "branch" and add the separate branches:

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial t}
$$

Problem 4. Find the tangent plane to the surface S in \mathbb{R}^{3} described by the following equations at the given point in $a \in \mathbb{R}^{3}$.
(1) $z=x^{2}-y^{3}, a=(2,-1,5)$
(2) $x^{2}+2 y^{2}+3 z^{2}=6, a=(1,1,-1)$
(3) $x y z^{2}-\log (z-1)=8, a=(-2,-1,2)$

Note for Peter: Try and draw an embedded surface in \mathbb{R}^{3} to give students a "feel" for what tangent spaces really are, then carry out the calculations. Make a joke about how calculus and linear algebra are about to make babies.

The strategy for all of these problems is the same. Theorem 2.37 tells us that if $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable and we define an embedded surface in \mathbb{R}^{3} by the level set $F(x, y, z)=c$, then ∇F is perpendicular to S at each point in S. We use this fact to define what the normal vectors of the tangent planes are.

Part 1: We can rearrange to get $g_{1}(x, y, z)=x^{2}-y^{3}-z$, which is clearly a differentiable function of x, y, z. Now $\nabla g_{1}=2 x \partial_{x}-3 y^{2} \partial_{y}-\partial_{z}$, so at the point $(2,-1,5)$ we have that $\left(\nabla g_{1}\right)_{(2,-1,5)}=(4,-3,-1)$. The tangent plane $T_{(2,-1,5)} S_{1}$ is defined by the equation $4 x-3 y-z=d$, and we can solve for d since we know a point on the plane. Plugging in $(2,-1,5)$ gives $d=4(2)-3(-1)-5=6$, so the tangent plane is $4 x-3 y-z=6$.

Part 2: We do exactly the same thing. Set $g_{2}(x, y, z)=x^{2}+2 y^{2}+3 z^{2}-6$, then:

$$
\nabla g_{2}=2 x \partial_{x}+4 y \partial_{y}+6 z \partial_{z}
$$

At the point $(1,1,-1)$, we have $\nabla g_{2}=(2,4,-6)$, therefore the tangent plane is given by $2 x+4 y-6 z=d$. We solve for d by plugging in the point on the plane: $d=2(1)+4(1)-6(-1)=12$.

Part 3: We are experts at this by now. Set $g_{3}(x, y, z)=x y z^{2}-\log (z-1)-6$, then

$$
\nabla g_{3}=y z^{2} \partial_{x}+x z^{2} \partial_{y}-\frac{1}{z-1} \partial_{z}
$$

The normal to the tangent plane at the point $(-2,-1,2)$ is given by $n=((-1)(4),(-2)(1),-1)=$ $(-4,-2,-1)$. The equation of the tangent plane is given by: $-4(-2)-2(-1)-(2)=8=d$ so $4 x+2 y+z=-8$.

