
1. Exercises from Sections 2.2-2.3

Problem 1. (Folland 2.1.8) Suppose f : S → R, S ⊆ Rn. If all partial derivatives ∂jf exist and

are bounded on S, then f is continuous on S.

Remark : Notice the converse is not true - i.e. f(x, y) = x2 + y2 on R2 has unbounded partials

Proof. • Fix ε > 0, pick any x ∈ S, and consider |f(xi + hi)− f(x)| for a vector h.

• We proceed by adding zero in a clever way and using the triangle inequality:

|f(x1 + h1, . . . , xn − hn)− f(x1, . . . , xn)| = |f(x1 + h1, . . . , xn + hn)− f(x1 + h1, . . . , xn−1 + hn−1, xn)

+ f(x1 + h1, . . . , xn−1 + hn−1, xn)− f(x1, . . . , xn)|

=

∣∣∣∣ n∑
j=1

f(x1 + h1, . . . , xj + hj , xj+1, . . . , xn)− f(x1 + h1, . . . , xj , xj+1, . . . , xn)

∣∣∣∣
≤

n∑
j=1

|f(x1 + h1, . . . , xj + hj , xj+1, . . . , xn)− f(x1 + h1, . . . , xj , xj+1, . . . , xn)|

• For each j, fix all the coordinates where k 6= j, then by the mean value theorem for 1 variable

functions there exists cj ∈ (xj , xj + hj) such that ∂f
∂xj

(cj) = (f(xj + hj)− f(xj))/hj

n∑
j=1

|f(x1 + h1, . . . , xj + hj , xj+1, . . . , xn)− f(x1 + h1, . . . , xj , xj+1, . . . , xn)| =
n∑

j=1

∣∣∣∣ ∂f∂xj (cj)hj

∣∣∣∣
• Applying boundedness of the partial derivatives, for each j there existsMj such that |∂xj

f(cj)| <
Mj , then

n∑
j=1

∣∣∣∣ ∂f∂xj (cj)hj

∣∣∣∣ ≤ n∑
j=1

Mjhj ≤ nmax {Mj}
∑
j

hj

•
∑

j hj → 0 as h→ 0, therefore just pick h small enough that
∑

j hj < ε/nmax(Nj).

�

Problem 2. Let f(x, y) = e4x−y2

. Compute ∇f and find the directional derivative of f in the

direction u = ( 3
5 ,

4
5 ) at the point (1,−2)

Remember that:

∇f =

(
∂f

∂x
,
∂f

∂y

)
=
(

4e4x−y2

,−2ye4x−y2
)

and is interpreted as the direction in which f is most rapidly increasing. We can find the rate of change

in a particular direction by taking the inner product of ∇f at the point (1,−2) with the direction u:

∂uf = ∇f · u = (4e0,−2(−2)e0) · (3

5
,

4

5
) =

12

5
+

16

5
=

28

5

Problem 3. (Practice with the chain rule) Suppose that w = f(x, y, t), x = g(y, t), y = h(t). Find

dw/dt.
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The easiest way to keep your book-keeping straight is to draw the “derivative tree” and just follow

the branches.
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Now we multiply along each “branch” and add the separate branches:

dw

dt
=
∂w

∂x

∂x

∂y

dy

dt
+
∂w

∂x

∂x

∂t
+
∂w

∂y

dy

dt
+
∂w

∂t

Problem 4. Find the tangent plane to the surface S in R3 described by the following equations at

the given point in a ∈ R3.

(1) z = x2 − y3, a = (2,−1, 5)

(2) x2 + 2y2 + 3z2 = 6, a = (1, 1,−1)

(3) xyz2 − log(z − 1) = 8, a = (−2,−1, 2)

Note for Peter: Try and draw an embedded surface in R3 to give students a “feel” for what tangent

spaces really are, then carry out the calculations. Make a joke about how calculus and linear algebra

are about to make babies.

The strategy for all of these problems is the same. Theorem 2.37 tells us that if F : R3 → R
is differentiable and we define an embedded surface in R3 by the level set F (x, y, z) = c, then ∇F is

perpendicular to S at each point in S. We use this fact to define what the normal vectors of the tangent

planes are.

Part 1: We can rearrange to get g1(x, y, z) = x2−y3−z, which is clearly a differentiable function of

x, y, z. Now ∇g1 = 2x∂x−3y2∂y−∂z, so at the point (2,−1, 5) we have that (∇g1)(2,−1,5) = (4,−3,−1).

The tangent plane T(2,−1,5)S1 is defined by the equation 4x−3y− z = d, and we can solve for d since we

know a point on the plane. Plugging in (2,−1, 5) gives d = 4(2)− 3(−1)− 5 = 6, so the tangent plane

is 4x− 3y − z = 6.

Part 2: We do exactly the same thing. Set g2(x, y, z) = x2 + 2y2 + 3z2 − 6, then:

∇g2 = 2x∂x + 4y∂y + 6z∂z

At the point (1, 1,−1), we have ∇g2 = (2, 4,−6), therefore the tangent plane is given by 2x+4y−6z = d.

We solve for d by plugging in the point on the plane: d = 2(1) + 4(1)− 6(−1) = 12.

Part 3: We are experts at this by now. Set g3(x, y, z) = xyz2 − log(z − 1)− 6, then

∇g3 = yz2∂x + xz2∂y −
1

z − 1
∂z

The normal to the tangent plane at the point (−2,−1, 2) is given by n = ((−1)(4), (−2)(1),−1) =

(−4,−2,−1). The equation of the tangent plane is given by: −4(−2) − 2(−1) − (2) = 8 = d so

4x+ 2y + z = −8.


